Self-collection of capillary blood using Tasso-SST devices for Anti-SARS-CoV-2 IgG antibody testing

Author:

Hendelman Tess,Chaudhary Anu,LeClair Angela C.,van Leuven Kimberly,Chee Jacqueline,Fink Susan L.,Welch Emily J.,Berthier Erwin,Quist Brook A.,Wald Anna,Wener Mark H.,Hoofnagle Andrew N.,Morishima ChihiroORCID

Abstract

Background Efforts to minimize COVID-19 exposure during the current SARS-CoV-2 pandemic have led to limitations in access to medical care and testing. The Tasso-SST kit includes all of the components necessary for remote, capillary blood self-collection. In this study, we sought to investigate the accuracy and reliability of the Tasso-SST device as a self-collection device for measurement of SARS-CoV-2 IgG antibodies. Methods Capillary blood was obtained via unsupervised and supervised application of the Tasso-SST device, and venous blood was collected by standard venipuncture. Unsupervised self-collected blood samples underwent either extreme summer or winter-simulated shipping conditions prior to testing. Sera obtained by all three methods were tested concurrently using the EuroImmun anti-SARS-CoV-2 S1 IgG assay in a CLIA-certified clinical laboratory. Results Successful Tasso-SST capillary blood collection by unsupervised and supervised administration was completed by 93.4% and 94.5% of participants, respectively. Sera from 56 participants, 55 with documented (PCR+) COVID-19, and 33 healthy controls were then tested for anti-SARS-CoV-2 IgG antibodies. Compared to venous blood results, Tasso-SST-collected (unstressed) and the summer- and winter-stressed blood samples demonstrated Deming regression slopes of 1.00 (95% CI: 0.99–1.02), 1.00 (95% CI: 0.98–1.01), and 0.99 (95% CI: 0.97–1.01), respectively, with an overall accuracy of 98.9%. Conclusions Capillary blood self-collection using the Tasso-SST device had a high success rate. Moreover, excellent concordance was found for anti-SARS-CoV-2 IgG results between Tasso-SST capillary and standard venous blood-derived sera. The Tasso-SST device should enable widespread collection of capillary blood for testing without medical supervision, facilitating epidemiologic studies.

Funder

Tasso, Inc

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference11 articles.

1. Delay or avoidance of medical care because of COVID-19–related concerns—United States, June 2020;MÉ Czeisler;MMWR Morb Mortal Wkly Rep,2020

2. Assessment of low volume sampling technologies: utility in nonclinical and clinical studies;KJ Williams;Bioanalysis,2021

3. How Many Subjects Does It Take To Do A Regression Analysis;SB Green;Multivariate Behavioral Research,1991

4. EuroImmun. https://www.coronavirus-diagnostics.com/documents/Indications/Infections/Coronavirus/EI_2606_D_UK_A.pdf (Accessed November 2020).

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3