Color, activity period, and eye structure in four lineages of ants: Pale, nocturnal species have evolved larger eyes and larger facets than their dark, diurnal congeners

Author:

Johnson Robert A.ORCID,Rutowski Ronald L.

Abstract

The eyes of insects display an incredible diversity of adaptations to enhance vision across the gamut of light levels that they experience. One commonly studied contrast is the difference in eye structure between nocturnal and diurnal species, with nocturnal species typically having features that enhance eye sensitivity such as larger eyes, larger eye facets, and larger ocelli. In this study, we compared eye structure between workers of closely related nocturnal and diurnal above ground foraging ant species (Hymenoptera: Formicidae) in four genera (Myrmecocystus, Aphaenogaster, Temnothorax, Veromessor). In all four genera, nocturnal species tend to have little cuticular pigment (pale), while diurnal species are heavily pigmented (dark), hence we could use cuticle coloration as a surrogate for activity pattern. Across three genera (Myrmecocystus, Aphaenogaster, Temnothorax), pale species, as expected for nocturnally active animals, had larger eyes, larger facet diameters, and larger visual spans compared to their dark, more day active congeners. This same pattern occurred for one pale species of Veromessor, but not the other. There were no consistent differences between nocturnal and diurnal species in interommatidial angles and eye parameters both within and among genera. Hence, the evolution of eye features that enhance sensitivity in low light levels do not appear to have consistent correlated effects on features related to visual acuity. A survey across several additional ant genera found numerous other pale species with enlarged eyes, suggesting these traits evolved multiple times within and across genera. We also compared the size of the anterior ocellus in workers of pale versus dark species of Myrmecocystus. In species with larger workers, the anterior ocellus was smaller in pale than in dark species, but this difference mostly disappeared for species with smaller workers. Presence of the anterior ocellus also was size-dependent in the two largest pale species.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3