An improved deep forest model for prediction of e-commerce consumers’ repurchase behavior

Author:

Zhang WeiweiORCID,Wang Mingyan

Abstract

As the Internet retail industry continues to rise, more and more consumers choose to shop online, especially Chinese consumers. Using consumer behavior data left on the Internet to predict repurchase behavior is of great significance for companies to achieve precision marketing. This paper proposes an improved deep forest model, and the interactive behavior characteristics of users and goods are added into the original feature model to predict the repurchase behavior of e-commerce consumers. Based on the Alibaba mobile e-commerce platform data set, first construct a feature engineering that includes user characteristics, product characteristics, and interactive behavior characteristics. And then use our proposed model to make predictions. Experiments show that the model’s overall performance with increased interactive behavior features is better and has higher accuracy. Compared with the existing prediction models, the improved deep forest model has certain advantages, which not only improves the prediction accuracy but also reduces the cost of training time.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

1. Big Data Deep Learning: Challenges and Perspectives;X W Chen;IEEE Access,2014

2. Predicting consumer behavior with Web search;S Goel;Proceedings of the National Academy of Sciences of the United States of America,2010

3. Predicting Online Shopping Behaviour from Clickstream Data using Deep Learning;D Koehn;Expert Systems with Applications,2020

4. China Internet Network Information Center;Y Cheng;The 46th China Statistical Report on Internet Development,2020

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3