High-gain observer-based nonlinear control scheme for biomechanical sit to stand movement in the presence of sensory feedback delays

Author:

Sultan NadiaORCID,Mughal Asif Mahmood,Islam Muhammad Najam ul,Malik Fahad Mumtaz

Abstract

Sit-to-stand movement (STS) is a mundane activity, controlled by the central-nervous-system (CNS) via a complex neurophysiological mechanism that involves coordination of limbs for successful execution. Detailed analysis and accurate simulations of STS task have significant importance in clinical intervention, rehabilitation process, and better design for assistive devices. The CNS controls STS motion by taking inputs from proprioceptors. These input signals suffer delay in transmission to CNS making movement control and coordination more complex which may lead to larger body exertion or instability. This paper deals with the problem of STS movement execution in the presence of proprioceptive feedback delays in joint position and velocity. We present a high-gain observer (HGO) based feedback linearization control technique to mimic the CNS in controlling the STS transfer. The HGO estimates immeasurable delayed states to generate input signals for feedback. The feedback linearization output control law generates the passive torques at joints to execute the STS movement. The H2 dynamic controller calculates the optimal linear gains by using physiological variables. The whole scheme is simulated in MATLAB/Simulink. The simulations illustrate physiologically improved results. The ankle, knee, and hip joint position profiles show a high correlation of 0.91, 0.97, 0.80 with the experimentally generated reference profiles. The faster observer dynamics and global boundness of controller result in compensation of delays. The low error and high correlation of simulation results demonstrate (1) the reliability and effectiveness of the proposed scheme for customization of human models and (2) highlight the fact that for detailed analysis and accurate simulations of STS movement the modeling scheme must consider nonlinearities of the system.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3