Parameter identification of sound absorption model of porous materials based on modified particle swarm optimization algorithm

Author:

Xu XiaomeiORCID,Lin Ping

Abstract

Porous materials have been widely used in the field of noise control. The non-acoustical parameters involved in the sound absorption model have an important effect on the sound absorption performance of porous materials. How to identify these non-acoustical parameters efficiently and accurately is an active research area and many researchers have devoted contributions on it. In this study, a modified particle swarm optimization algorithm is adopted to identify the non-acoustical parameters of the jute fiber felt. Firstly, the sound absorption model used to predict the sound absorption coefficient of the porous materials is introduced. Secondly, the model of non-acoustical parameter identification of porous materials is established. Then the modified particle swarm optimization algorithm is introduced and the feasibility of the algorithm applied to the parameter identification of porous materials is investigated. Finally, based on the sound absorption coefficient measured by the impedance tube the modified particle swarm optimization algorithm is adopted to identify the non-acoustical parameters involved in the sound absorption model of the jute fiber felt, and the identification performance and the computational performance of the algorithm are discussed. Research results show that compared with other identification methods the modified particle swarm optimization algorithm has higher identification accuracy and is more suitable for the identification of non-acoustical parameters of the porous materials. The sound absorption coefficient curve predicted by the modified particle swarm optimization algorithm has good consistency with the experimental curve. In the aspect of computer running time, compared with the standard particle swarm optimization algorithm, the modified particle swarm optimization algorithm takes shorter running time. When the population size is larger, modified particle swarm optimization algorithm has more advantages in the running speed. In addition, this study demonstrates that the jute fiber felt is a good acoustical green fibrous material which has excellent sound absorbing performance in a wide frequency range and the peak value of its sound absorption coefficient can reach 0.8.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3