Hydraulic performance prediction and optimization of an engine cooling water pump using computational fluid dynamic analysis

Author:

Tan LibinORCID,Yuan Yuejin,Zhang Man

Abstract

In current research, the hydraulic performance prediction and optimization of an engine cooling water pump was conducted by computational fluid dynamic (CFD) analysis. Through CFD simulation, the pump head, shaft power and efficiency for the original pump at volume flow rate 25 L/min and impeller rotating speed 4231 r/min were 3.87 m, 66.7 W and 23.09% respectively. For improving hydraulic performance, an optimization study was carried out. After optimization, four potential optimized designs were put forward. The efficiency of the optimized design No.1 for engine cooling water pump was nearly 6% higher than that of the original pump model; and the head of the optimized design No.2 for engine cooling water pump was 9% higher than that of the original pump model. Under the condition of maintaining the pump head and considering comprehensive improvement effect, the optimized design No.3 was considered as the best design and selected as the test case for validating the optimum design. The hydraulic performance predictions for this optimum engine cooling water pump agreed well with experimental data at design condition with relative discrepancies of 2.9% and 5.5% for the pump head and pump efficiency, respectively. It proved that performance prediction calculation model and the automatic optimization model were effective. This research work can provide theoretical basis for the design, development and optimization of engine cooling water pump.

Funder

National Natural Science Foundation of China

Key project of International Science and Technology Cooperation Program for Shaanxi Province

International Science and Technology Cooperation Program for Shaanxi Province

Key Research and Development Program of Shaanxi Province

National Key Research and Development Program of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference34 articles.

1. Optimization design and experiment of centrifugal pump based on CFD;WG Zhao;Transactions of the CSAE,2015

2. Analysis of head prediction of centrifugal pumps at low flow rate based on CFD;MG Tan;Transactions of the CSAE,2013

3. Clocking effect of vaned diffuser on hydraulic performance of high-power pump by using the numerical flow loss visualization method;YD Gu;Energy,2019

4. Research of inner flow in a double blades pump based on openfoam;HL Liu;J Hydrodyn,2012

5. Effect of space diffuser on flow characteristics of a centrifugal pump by computational fluid dynamic analysis;YY Liu;PLoS ONE,2021

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3