Offspring of first-generation hatchery steelhead trout (Oncorhynchus mykiss) grow faster in the hatchery than offspring of wild fish, but survive worse in the wild: Possible mechanisms for inadvertent domestication and fitness loss in hatchery salmon

Author:

Blouin Michael S.ORCID,Wrey Madeleine C.,Bollmann Stephanie R.,Skaar James C.,Twibell Ronald G.,Fuentes Claudio

Abstract

Salmonid fish raised in hatcheries often have lower fitness (number of returning adult offspring) than wild fish when both spawn in the wild. Body size at release from hatcheries is positively correlated with survival at sea. So one explanation for reduced fitness is that hatcheries inadvertently select for trait values that enhance growth rate under the unnatural environment of a hatchery, but that are maladaptive in the wild environment. A simple prediction of this hypothesis is that juveniles of hatchery origin should grow more quickly than fish of wild origin under hatchery conditions, but should have lower survival under wild conditions. We tested that hypothesis using multiple full sibling families of steelhead (Oncorhynchus mykiss) that were spawned using either two wild parents (WxW) or two first-generation hatchery (HxH) parents. Offspring from all the families were grown together under hatchery conditions and under semi-natural conditions in artificial streams. HxH families grew significantly faster in the hatchery, but had significantly lower survival in the streams. That we see this tradeoff after only a single generation of selection suggests that the traits involved are under very strong selection. We also considered one possible alteration to the hatchery environment that might reduce the intensity of selection among families in size at release. Here we tested whether reducing the fat content of hatchery feed would reduce the variance among families in body size. Although fish raised under a low-fat diet were slightly smaller, the variation among families in final size was unchanged. Thus, there is no evidence that reducing the fat content of hatchery feed would reduce the opportunity for selection among families on size at release.

Funder

Bonneville Power Administrations

Oregon Dept Fish and Wildlife

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3