Extended seed rain period of Adenostoma fasciculatum impacts diverse seed predators

Author:

Garaventa Joanna M.ORCID,Parker V. ThomasORCID

Abstract

Aims The principal chaparral species in California, Adenostoma fasciculatum, an evergreen, sclerophyllous shrub, is broadly distributed and provides habitat and food resources for a large and diverse animal community. The effects of climate change, including elevated temperatures, fire frequency and severity, along with increased urban encroachment, have placed pressure on chaparral habitats in California. Our goal is to investigate aspects of reproductive ecology as a measure of the potential resiliency of A. fasciculatum. We focus on seed rain (all seed falling into the seed traps regardless of origin) and seed banks in the context of plant-animal interactions and regeneration. Methods Stand recovery following disturbance is achieved through both resprouting and germination from established persistent soil seed banks. In this study we focus on seed ecology using a series of experiments to document the length and quantity of seed rain, seed predation, parsing the importance of the community of granivores, and evaluating the connection between stand age and germination rate from soil seed banks. Important findings Our research documented an 8-month seed rain duration with over 1 million seeds per m2, multiple seed predators including passerines (songbirds) and rodents, and points to the possibility of native ants playing a role in the seed dispersal process. This is important given the recent advancement of the invasive Argentine ant (Linepthema humile) into Californian chaparral. This research demonstrates a clear relationship between A. fasciculatum and both resident and migratory granivores in the chaparral. We documented that a 39-year-old stand had higher germination rates than those which were 16, 20, 41 and 71 years old and how seed banks play a major role in assuring resiliency following fire. These findings are important for wildland managers to assure the continued resiliency of A. fasciculatum.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3