Cultivable and metagenomic approach to study the combined impact of nanogypsum and Pseudomonas taiwanensis on maize plant health and its rhizospheric microbiome

Author:

Chaudhary ParulORCID,Khati Priyanka,Chaudhary Anuj,Maithani Damini,Kumar Govind,Sharma Anita

Abstract

In the present study we examined the effect of nanogypsum and Pseudomonas taiwanensis strain BCRC 17751on plant and soil health using conventional and metagenomics approaches. Soil physicochemical properties and agronomical parameters of maize plants were reported to be better when applied with nanogypsum and bacterial inoculum together. When compared to control a significant increase in total bacterial counts, nitrogen, phosphorus, potassium (NPK) solubilizing bacterial population and soil enzyme activities (fluorescein diacetate, alkaline phosphatase, dehydrogenase, β-glucosidase, arylesterase and amylase) was reported in treatments. The metagenomics studies revealed dominance of beneficial bacteria such as Proteobacteria, Bacteriodetes, Planctomycetes, Acidobacteria and Nitrospirae in treated soil. On the other hand some novel bacterial diversity was also reported in treated soil which was evident from presence of taxonomically unclassified sequences. Hence, it can be concluded that combined application of nanogypsum and Pseudomonas taiwanensis in maize help in improving the structure and function of soil which affects the plant health without causing any toxic effect. However, in situ validation of the prescribed treatment is required under field conditions on different crops in order to give maximum benefits to the farmers and the environment.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference64 articles.

1. Enhancement of maize growth using some plant growth promoting rhizobacteria (PGPR) under laboratory conditions;OA Almaghrabi;Life Science J,2014

2. Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA;IZ Zerrouk;Acta Physiologiae Plantarum,2019

3. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity;A Ambrosini;Plant and Soil,2016

4. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth;P Baas;PeerJ,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3