Structural features and phylogenetic implications of Cicadellidae subfamily and two new mitogenomes leafhoppers

Author:

Chen Xiaoxiao,Yuan Zhouwei,Li Can,Dietrich Christopher H.,Song YuehuaORCID

Abstract

Complete mitochondrial genome sequences facilitate species identification and analyses of phylogenetic relationships. However, the available data are limited to the diverse and widespread insect family Cicadellidae. This study analyzes and summarizes the complete mitochondrial genome structure characteristics of 11 leafhopper subfamilies and two newly sequenced Typhlocybinae species, Empoascanara wengangensis and E. gracilis. Moreover, using 13PCGs and rRNA data to analyze the nucleotide diversity, evolution rate, and the phylogenetic relationship between the subfamilies of 56 species, verifying the taxonomic status analysis of E. wengangensis and E. gracilis. The analysis results show that the genome structures of the subfamilies and the newly sequenced two species are very similar, and the size of the CR region is significantly related to the repeat unit. However, in the entire AT-skews and CG-skews, the AT-skews of other subfamilies are all positive, and CG-skews are negative, while Empoascini of Typhlocybinae and Ledrinae are the opposite. Furthermore, among 13PCGs, the AT-skews of 13 species are all negative while CG-skews are positive, which from Empoascini in Typhlocybinae, Idiocerinae, Cicadellinae, Ledrinae, and Evacanthinae. Phylogenetic analysis shows that ML and PB analysis produce almost consistent topologies between different data sets and models, and some relationships are highly supported and remain unchanged. Mileewinae is a monophyletic group and is a sister group with Typhlocybinae, and the sister group of Evacanthinae is Ledrinae + Cicadellinae. Phylogenetic analysis grouped the two newly sequenced species with other species of Typhlocybinae, which was separated from other subfamilies, and all Erythroneurini insects gathered together. However, E. gracilis grouped into a single group, not grouped with species of the same genus (Empoascanara). This result does not match the traditional classification, and other nuclear genes or transcriptome genes may be needed to verify the result. Nucleotide diversity analysis shows that nad4 and nad5 may be evaluated as potential DNA markers defining the Cicadellidae insect species.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference81 articles.

1. Animal mitochondrial genomes;JL Boore;Nucleic Acids Res,1999

2. Characterization and phylogenetic implications of the complete mitochondrial genome of Idiocerinae (Hemiptera: Cicadellidae).;JJ Wang;Int. J. Biol. Macromol,2018

3. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions;Y Kumazawa;Genetics,1998

4. Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic;CE Cook;Proc. Biol. Sci,2005

5. Mitochondrial DNA and two perspectives on evolutionary genetics;AC Wilson;Biol. J. Linn. Soc,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3