Abstract
The nucleus-to-cytoplasm ratio (N:C) can be used as one metric in histology for grading certain types of tumor malignancy. Current N:C assessment techniques are time-consuming and low throughput. Thus, in high-throughput clinical contexts, there is a need for a technique that can assess cell malignancy rapidly. In this study, we assess the N:C ratio of four different malignant cell lines (OCI-AML-5—blood cancer, CAKI-2—kidney cancer, HT-29—colon cancer, SK-BR-3—breast cancer) and a non-malignant cell line (MCF-10A –breast epithelium) using an imaging flow cytometer (IFC). Cells were stained with the DRAQ-5 nuclear dye to stain the cell nucleus. An Amnis ImageStreamX® IFC acquired brightfield/fluorescence images of cells and their nuclei, respectively. Masking and gating techniques were used to obtain the cell and nucleus diameters for 5284 OCI-AML-5 cells, 1096 CAKI-2 cells, 6302 HT-29 cells, 3159 SK-BR-3 cells, and 1109 MCF-10A cells. The N:C ratio was calculated as the ratio of the nucleus diameter to the total cell diameter. The average cell and nucleus diameters from IFC were 12.3 ± 1.2 μm and 9.0 ± 1.1 μm for OCI-AML5 cells, 24.5 ± 2.6 μm and 15.6 ± 2.1 μm for CAKI-2 cells, 16.2 ± 1.8 μm and 11.2 ± 1.3 μm for HT-29 cells, 18.0 ± 3.7 μm and 12.5 ± 2.1 μm for SK-BR-3 cells, and 19.4 ± 2.2 μm and 10.1 ± 1.8 μm for MCF-10A cells. Here we show a general N:C ratio of ~0.6–0.7 across varying malignant cell lines and a N:C ratio of ~0.5 for a non-malignant cell line. This study demonstrates the use of IFC to assess the N:C ratio of cancerous and non-cancerous cells, and the promise of its use in clinically relevant high-throughput detection scenarios to supplement current workflows used for cancer cell grading.
Funder
Natural Sciences and Engineering Research Council of Canada
Canadian Foundation for Innovation
Ontario Ministry for Research and Innovation
Terry Fox Foundation
Publisher
Public Library of Science (PLoS)
Reference57 articles.
1. Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia;LF Grimwade;Methods,2017
2. Label-Free Analyses of Minimal Residual Disease in ALL Using Deep Learning and Imaging Flow Cytometry;M Doan;Blood,2017
3. Going With the Flow: The Promise and Challenge of Liquid Biopsies;MJ Friedrich;JAMA,2017
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献