Impact of different frequencies of controlled breath and pressure-support levels during biphasic positive airway pressure ventilation on the lung and diaphragm in experimental mild acute respiratory distress syndrome

Author:

Thompson Alessandra F.,Moraes Lillian,Rocha Nazareth N.,Fernandes Marcos V. S.,Antunes Mariana A.ORCID,Abreu Soraia C.,Santos Cintia L.,Capelozzi Vera L.,Samary Cynthia S.,de Abreu Marcelo G.,Saddy Felipe,Pelosi Paolo,Silva Pedro L.ORCID,Rocco Patricia R. M.ORCID

Abstract

Background We hypothesized that a decrease in frequency of controlled breaths during biphasic positive airway pressure (BIVENT), associated with an increase in spontaneous breaths, whether pressure support (PSV)-assisted or not, would mitigate lung and diaphragm damage in mild experimental acute respiratory distress syndrome (ARDS). Materials and methods Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 hours, animals were randomly assigned to: 1) BIVENT-100+PSV0%: airway pressure (Phigh) adjusted to VT = 6 mL/kg and frequency of controlled breaths (f) = 100 bpm; 2) BIVENT-50+PSV0%: Phigh adjusted to VT = 6 mL/kg and f = 50 bpm; 3) BIVENT-50+PSV50% (PSV set to half the Phigh reference value, i.e., PSV50%); or 4) BIVENT-50+PSV100% (PSV equal to Phigh reference value, i.e., PSV100%). Positive end-expiratory pressure (Plow) was equal to 5 cmH2O. Nonventilated animals were used for lung and diaphragm histology and molecular biology analysis. Results BIVENT-50+PSV0%, compared to BIVENT-100+PSV0%, reduced the diffuse alveolar damage (DAD) score, the expression of amphiregulin (marker of alveolar stretch) and muscle atrophy F-box (marker of diaphragm atrophy). In BIVENT-50 groups, the increase in PSV (BIVENT-50+PSV50% versus BIVENT-50+PSV100%) yielded better lung mechanics and less alveolar collapse, interstitial edema, cumulative DAD score, as well as gene expressions associated with lung inflammation, epithelial and endothelial cell damage in lung tissue, and muscle ring finger protein 1 (marker of muscle proteolysis) in diaphragm. Transpulmonary peak pressure (Ppeak,L) and pressure–time product per minute (PTPmin) at Phigh were associated with lung damage, while increased spontaneous breathing at Plow did not promote lung injury. Conclusion In the ARDS model used herein, during BIVENT, the level of PSV and the phase of the respiratory cycle in which the inspiratory effort occurs affected lung and diaphragm damage. Partitioning of inspiratory effort and transpulmonary pressure in spontaneous breaths at Plow and Phigh is required to minimize VILI.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3