Delineating reclamation zones for site-specific reclamation of saline-sodic soils in Dushak, Turkmenistan

Author:

Günal ElifORCID

Abstract

Soil salinization is the widespread problem seriously affecting the agricultural sustainability and causing income losses in arid regions. The major objective of the study was to quantify and map the spatial variability of soil salinity and sodicity. Determining salinity and sodicity variability in different soil layers was the second objective. Finally, proposing an approach for delineating different salinity and sodicity zones was the third objective. The study was carried out in 871.1 ha farmland in Southeast of Dushak town of Ahal Province, Turkmenistan. Soil properties, including electrical conductivity (EC), soil reaction (pH), sodium adsorption ratio (SAR), calcium carbonate and particle size distribution (clay, silt and sand fractions) in 0–30, 30–60, 60–90 and 90–120 cm soil layers were recorded. The EC values in different soil layers indicated serious soil salinization problem in the study area. The mean EC values in 0–90 cm depth were high (8 dS m-1), classifying the soils as moderate to strongly saline. Spatial dependence calculated by the nugget to sill ratio indicated a strong spatial autocorrelation. The elevation was the primary factor affecting spatial variation of soil salinity in the study area. The reclamation of the field can be planned based on three distinct areas, i.e., high (≥12 dS m-1), moderate (12–8 dS m-1) and low (<8 dS m-1) EC values. The spatial trend analyses of SAR values revealed similar patterns for EC and pH; both of which gradually decreased from north to the south-west. The amount of water needed to leach down the salts from 60 cm of soil profile is between 56.4–150.0 ton ha-1 and the average leaching water was 89.8 tons ha-1. The application of leaching water based on the amount of average leaching water will result in higher or lower leaching water application to most locations and the efficiency of the reclamation efforts will be low. Similar results were recorded for sulfur, sulfuric acid and gypsum requirements to remediate sodicity. The results concluded that the best management strategy in planning land development and reclamation schemes for saline and sodic soils require accurate information about the spatial distribution of salinity and sodicity across the target area.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference59 articles.

1. Salt-affected soils at the farm scale: successful experiences and innovation needs;AM Paz;1st International Electronic Conference on Agronomy session Precision and Digital Agriculture,2021

2. Catchment scale spatial variability of soil salt content in agricultural oasis, Northwest China;Y Wang;Environ Geol,2008

3. Consequences of climate change for the soil climate in Central Europe and the central plains of the United States;M Trnka;Clim Change,2013

4. Adapting to climate change by improving water productivity of soils in dry areas;M Qadir;Land Degrad Dev,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3