Abstract
Aging is associated with functional decline in the immune system and increases the risk of chronic diseases owing to smoldering inflammation. In the present study, we demonstrated an age-related increase in the accumulation of Programmed Death-1 (PD-1)+ memory-phenotype T cells that are considered “senescence-associated T cells” in both the visceral adipose tissue and spleen. As caloric restriction is an established intervention scientifically proven to exert anti-aging effects and greatly affects physiological and pathophysiological alterations with advanced age, we evaluated the effect of caloric restriction on the increase in this T-cell subpopulation and glucose tolerance in aged mice. Long-term caloric restriction significantly decreased the number of PD-1+ memory-phenotype cluster of differentiation (CD) 4+ and CD8+ T cells in the spleen and visceral adipose tissue, decreased M1-type macrophage accumulation in visceral adipose tissue, and improved insulin resistance in aged mice. Furthermore, the immunological depletion of PD-1+ T cells reduced adipose inflammation and improved insulin resistance in aged mice. Taken together with our previous report, these results indicate that senescence-related T-cell subpopulations are involved in the development of chronic inflammation and insulin resistance in the context of chronological aging and obesity. Thus, long-term caloric restriction and specific deletion of senescence-related T cells are promising interventions to regulate age-related chronic diseases.
Funder
Japan Society for the Promotion of Science
Takeda Medical Research Foundation
Mitsubishi Foundation
Publisher
Public Library of Science (PLoS)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献