Region-aggregated attention CNN for disease detection in fruit images

Author:

Han Chang Hee,Kim Eal,Doan Tan Nhu Nhat,Han Dongil,Yoo Seong Joon,Kwak Jin TaeORCID

Abstract

Background Diseases and pests have a profound effect on a yearly harvest and productivity in agriculture. A precise and accurate detection of the diseases and pests could facilitate timely treatment and management of the diseases and pests and lessen the resultant loss in economy and health. Herein, we propose an improved design of the disease detection system for plant images. Methods Built upon the two-stage framework of object detection neural networks such as Mask R-CNN, the proposed network involves three types of extensions, including the addition of additional level of feature pyramids to improve the exploration and proposal of candidate regions, the aggregation of feature maps from all levels of feature pyramids per candidate region to fully exploit the information from feature pyramids, and the introduction of a squeeze-and-excitation block to the construction of feature pyramids and the aggregated feature maps to improve the representation of feature maps. Results The proposed network was evaluated using 74 images of infected apple fruits. In 3-fold cross-validation, the proposed network achieved averaged precision (AP) of 72.26, AP at 0.5 threshold of 88.51 and AP at 0.75 threshold of 82.30. In the comparative experiments, the proposed network outperformed the other competing networks. The utility of the three extensions was also demonstrated in comparison to Mask R-CNN. Conclusions The experimental results suggest that the proposed network could identify and localize the symptom of the disease with high accuracy, leading to an early diagnosis and treatment of the disease, and thus holding the potential for improving crop yield and quality.

Funder

MSIP/IITP

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. Machine Learning in Agriculture: A Review;KG Liakos;Sensors (Basel),2018

2. Vision-based pest detection based on SVM classification method;MA Ebrahimi;Computers and Electronics in Agriculture,2017

3. Random forests;L. Breiman;Machine learning,2001

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3