Abstract
Objective
We compared the image quality according to the radiation dose on computed tomography (CT) venography at 80 kVp using advanced modeled iterative reconstruction for deep vein thrombus and other specific clinical conditions considering standard-, low-, and ultralow-dose CT.
Methods
In this retrospective study, 105 consecutive CT venography examinations were included using a third-generation dual-source scanner in the dual-source mode in tubes A (reference mAs, 210 mAs at 70%) and B (reference mAs, 90 mAs at 30%) at a fixed 80 kVp. Two radiologists independently reviewed each observation of standard- (100% radiation dose), low- (70%), and ultralow-dose (30%) CT. The objective quality of large veins and subjective image quality regarding lower-extremity veins and deep vein thrombus were compared between images according to the dose. In addition, the CT dose index volumes were displayed from the images.
Results
From the patients, 24 presented deep vein thrombus in 69 venous segments of CT examinations. Standard-dose CT provided the lowest image noise at the inferior vena cava and femoral vein compared with low- and ultralow-dose CT (p < 0.001). There were no differences regarding subjective image quality between the images of popliteal and calf veins at the three doses (e.g., 3.8 ± 0.7, right popliteal vein, p = 0.977). The image quality of the 69 deep vein thrombus segments showed equally slightly higher scores in standard- and low-dose CT (4.0 ± 0.2) than in ultralow-dose CT (3.9 ± 0.4). The CT dose index volumes were 4.4 ± 0.6, 3.1 ± 0.4, and 1.3 ± 0.2 mGy for standard-, low-, and ultralow-dose CT, respectively.
Conclusions
Low- and ultralow-dose CT venography at 80 kVp using an advanced model based iterative reconstruction algorithm allows to evaluate deep vein thrombus and perform follow-up examinations while showing an acceptable image quality and reducing the radiation dose.
Funder
Institute for Information and Communications Technology Promotion
National Research Foundation of Korea
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献