Random forest analysis of factors affecting urban carbon emissions in cities within the Yangtze River Economic Belt

Author:

Wang Zhaohan,Zhao ZijieORCID,Wang Chengxin

Abstract

China became the country with the largest global carbon emissions in 2007. Cities are regional population and economic centers and are the main sources of carbon emissions. However, factors influencing carbon emissions from cities can vary with geographic location and the development history of the cities, rendering it difficult to explicitly quantify the influence of individual factors on carbon emissions. In this study, random forest (RF) machine learning algorithms were applied to analyze the relationships between factors and carbon emissions in cities using real-world data from Chinese cities. Seventy-three cities in three urban agglomerations within the Yangtze River Economic Belt were evaluated with respect to urban carbon emissions using data from regional energy balance tables for the years 2000, 2007, 2012, and 2017. The RF algorithm was then used to select 16 prototypical cities based on 10 influencing factors that affect urban carbon emissions while considering five primary factors: population, industry, technology levels, consumption, and openness to the outside world. Subsequently, 18 consecutive years of data from 2000 to 2017 were used to construct RFs to investigate the temporal predictability of carbon emission variation in the 16 cities based on regional differences. Results indicated that the RF approach is a practical tool to study the connection between various influencing factors and carbon emissions in the Yangtze River Economic Belt from different perspectives. Furthermore, regional differences among the primary carbon emission influencing factors for each city were clearly observed and were related to urban population characteristics, urbanization level, industrial structures, and degree of openness to the outside world. These factors variably affected different cities, but the results indicate that regional emission reductions have achieved positive results, with overall simulation trends shifting from underestimation to overestimation of emissions.

Funder

National Key Research and Development Program of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3