Spatial-temporal dynamics and influencing factors of archaeal communities in the sediments of Lancang River cascade reservoirs (LRCR), China

Author:

Yuan BoORCID,Wu Wei,Guo Mengjing,Zhou Xiaode,Xie Shuguang

Abstract

The spatial and temporal distribution of the archaeal community and its driving factors in the sediments of large-scale regulated rivers, especially in rivers with cascade hydropower development rivers, remain poorly understood. Quantitative PCR (qPCR) and Illumina MiSeq sequencing of the 16S rRNA archaeal gene were used to comprehensively investigate the spatiotemporal diversity and structure of archaeal community in the sediments of the Lancang River cascade reservoirs (LRCR). The archaeal abundance ranged from 5.11×104 to 1.03×106 16S rRNA gene copies per gram dry sediment and presented no temporal variation. The richness, diversity, and community structure of the archaeal community illustrated a drastic spatial change. Thaumarchaeota and Euryyarchaeota were the dominant archaeal phyla in the sediments of the cascade rivers, and Bathyarchaeota was also an advantage in the sediments. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and carbon and nitrogen metabolism in downstream reservoirs, indicating that anthropogenic pollution discharges might act as the dominant selective force to alter the archaeal communities. Nitrate and C/N ratio were found to play important roles in the formation of the archaeal community composition. In addition, the sediment archaeal community structure was also closely related to the age of the cascade reservoir and hydraulic retention time (HRT). This finding indicates that the engineering factors of the reservoir might be the greatest contributor to the archaeal community structure in the LRCR.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference75 articles.

1. Hydrologic sources of carbon cycling uncertainty throughout the terrestrial-aquatic continuum;G Darrel Jenerette;Global Change Biology,2005

2. JP. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean;M. Syvitski;Science,2005

3. Community reassembly after river regulation: rapid loss of fish diversity and the emergence of a new state;PB Peronico;Hydrobiologia,2019

4. Blessed dams or damned dams?;D. J. Milliman;Nature,1997

5. Dam effects on bedload transport on the upper Santa Ana River, California, and implications for native fish habitat;SA Wright;River Research and Applications,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3