Exhalatory dynamic interactions between patients connected to a shared ventilation device

Author:

Garcia Eijo Pedro M.,D’Adamo Juan,Bianchetti Arturo,Duriez Thomas,Cabaleiro Juan M.,Irrazabal Célica,Otero Pablo,Artana GuillermoORCID

Abstract

In this work a shared pressure-controlled ventilation device for two patients is considered. By the use of different valves incorporated to the circuit, the device enables the restriction of possible cross contamination and the individualization of tidal volumes, driving pressures, and positive end expiratory pressure PEEP. Possible interactions in the expiratory dynamics of different pairs of patients are evaluated in terms of the characteristic exhalatory times. These characteristic times can not be easily established using simple linear lumped element models. For this purpose, a 1D model using the Hydraulic and Mechanical libraries in Matlab Simulink was developed. In this sense, experiments accompany this study to validate the model and characterize the different valves of the circuit. Our results show that connecting two patients in parallel to a ventilator always resulted in delays of time during the exhalation. The size of this effect depends on different parameters associated with the patients, the circuit and the ventilator. The dynamics of the exhalation of both patients is determined by the ratios between patients exhalatory resistances, compliances, driving pressures and PEEPs. Adverse effects on exhalations became less noticeable when respiratory parameters of both patients were similar, flow resistances of valves added to the circuit were negligible, and when the ventilator exhalatory valve resistance was also negligible. The asymmetries of driving pressures, compliances or resistances exacerbated the possibility of auto-PEEP and the increase in relaxation times became greater in one patient than in the other. In contrast, exhalatory dynamics were less sensitive to the ratio of PEEP imposed to the patients.

Funder

University of Buenos Aires

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3