Receiver phase alignment using fitted SVD derived sensitivities from routine prescans

Author:

Stanley Olivia W.ORCID,Menon Ravi S.,Klassen L. MartynORCID

Abstract

Magnetic resonance imaging radio frequency arrays are composed of multiple receive coils that have their signals combined to form an image. Combination requires an estimate of the radio frequency coil sensitivities to align signal phases and prevent destructive interference. At lower fields this can be accomplished using a uniform physical reference coil. However, at higher fields, uniform volume coils are lacking and, when available, suffer from regions of low receive sensitivity that result in poor sensitivity estimation and combination. Several approaches exist that do not require a physical reference coil but require manual intervention, specific prescans, or must be completed post-acquisition. This makes these methods impractical for large multi-volume datasets such as those collected for novel types of functional MRI or quantitative susceptibility mapping, where magnitude and phase are important. This pilot study proposes a fitted SVD method which utilizes existing combination methods to create a phase sensitive combination method targeted at large multi-volume datasets. This method uses any multi-image prescan to calculate the relative receive sensitivities using voxel-wise singular value decomposition. These relative sensitivities are fitted to the solid harmonics using an iterative least squares fitting algorithm. Fits of the relative sensitivities are used to align the phases of the receive coils and improve combination in subsequent acquisitions during the imaging session. This method is compared against existing approaches in the human brain at 7 Tesla by examining the combined data for the presence of singularities and changes in phase signal-to-noise ratio. Two additional applications of the method are also explored, using the fitted SVD method in an asymmetrical coil and in a case with subject motion. The fitted SVD method produces singularity-free images and recovers between 95–100% of the phase signal-to-noise ratio depending on the prescan data resolution. Using solid harmonic fitting to interpolate singular value decomposition derived receive sensitivities from existing prescans allows the fitted SVD method to be used on all acquisitions within a session without increasing exam duration. Our fitted SVD method is able to combine imaging datasets accurately without supervision during online reconstruction.

Funder

Canadian Institutes of Health Research

Canada First Research Excellence Fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3