Biochars derived from bamboo and rice straw for sorption of basic red dyes

Author:

Sackey Ebenezer AmpofoORCID,Song Yali,Yu Ya,Zhuang Haifeng

Abstract

The primary purpose of this study is to eliminate Basic Red 46 dye from aqueous solutions utilizing batch experiments by adsorption on biochars prepared from bamboo and rice straw biomass. Biochars prepared from bamboo (B), and rice straw (R) was pyrolyzed at 500°C (B500 and R500). Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, X-ray Diffraction (XRD), and surface area and porosity analyzers were used to characterize the B500 and R500 samples. The characterization results indicated that the biochars possessed an amorphous porous structure with many functional groups consisting primarily of silicates. The adsorption rate of BR46 was evaluated using two kinetic models (pseudo-first-order and pseudo-second-order), and the results indicated that the pseudo-second-order model fitted to the experimental data well (R2>0.99). Nearly 24 h was sufficient to achieve equilibrium with the dye adsorption for the two biochars. R500 had a greater adsorption efficiency than B500. As pH levels increased, the dye’s adsorption capability increased as well. The Langmuir and Freundlich isotherm models were used to investigate the equilibrium behavior of BR46 adsorption, and the equilibrium data fitted well with the Langmuir model (R2>0.99) compared to the Freundlich model (R2>0.89). The maximum adsorption capacities of BR46 are 9.06 mg/g for B500 and 22.12 mg/g for R500, respectively. Additionally, adsorption capacity increased as temperature increased, indicating that adsorption is favored at higher temperatures. The electrostatic interaction is shown to be the dominant mechanism of BR46 adsorption, and BR46 acts as an electron-acceptor, contributing to n-π EDA (Electron Donor-Acceptor) interaction. Thermodynamic parameters for the dye-adsorbent system revealed that the adsorption process is spontaneous and feasible. The values of the adsorption coefficient (Kd) were on the order of 102−103. Kd of R500 was greater than that of B500, indicating that R500 had a greater adsorption capacity. The results showed that R500 could be used as a low-cost alternative adsorbent for removing BR46 from effluents.

Funder

natural science foundation of zhejiang province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3