Tolerance of coralline algae to ocean warming and marine heatwaves

Author:

Krieger Erik C.ORCID,Taise AleluiaORCID,Nelson Wendy A.,Grand Johan,Le Ru Eric,Davy Simon K.,Cornwall Christopher E.

Abstract

Ocean warming (OW) and marine heatwaves (MHWs) rapidly transform marine ecosystems, especially when they impact keystone or foundation species. Foundation species such as kelps, fucoids and corals are highly sensitive to heat stress, which threatens the future of temperate seaweed forests and tropical reefs. However, functioning and resilience of these systems also relies on the less conspicuous coralline algae, whose thermal tolerances have gone largely untested. Here, we examined the sensitivity of four temperate coralline algal morphotypes from three different species to four realistic present day and future OW and MHW scenarios (ambient [16°C constant]; ambient+MHW [16°C baseline + a symmetric two-week heatwave with a peak intensity of 18.7°C]; future [18.7°C constant]; future+MHW [18.7°C baseline + a symmetric two-week heatwave with a peak intensity of 21.4°C]). Photo-physiology (e.g., Fv/Fm) and calcification physiology (e.g., proxies for calcifying fluid saturation state ΩCF) were generally unaffected by the treatments, implying a high thermo-tolerance of our study species compared to other important marine foundation species. We ascribe this mainly to their photosynthetic apparatus that, unlike in other photoautotrophs, continued to function under heat stress. Experimental evidence presented here and elsewhere implies that coralline algae are likely to continue to play their crucial ecological roles in a warming ocean. Yet, such predictions are fraught with uncertainty due to the substantial gaps in our knowledge. We attempt to highlight some of these gaps and aim to present potential physiological underpinnings of their thermo-tolerance.

Funder

The Royal Society of New Zealand

Victoria University of Wellington University Research Fund

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3