Influence of Mozambique Channel eddies on larval loss of two shallow-water commercial shrimp species

Author:

Malauene Bernardino S.ORCID,Lett Christophe,Marsac Francis,Penven PierrickORCID,Abdula SilviaORCID,Moloney Coleen L.ORCID,Roberts Michael J.

Abstract

The shallow-water shrimp fishery is an important social and economic sector in Mozambique. However, catches of shrimps have been declining over the last decades, presumably due to poor recruitment. Climate change has been proposed as a potential cause of increased mesoscale eddy activity over the Mozambique Channel, which may have played a role in poor shrimp recruitment. Indeed, stronger eddies could transport matter, including increased numbers of shrimp larvae, from the coast to unfavourable offshore areas. In this study we used a biophysical model to investigate the influence of eddies on the dispersal of larvae of two commercial shrimp species (Penaeus indicus and Metapenaeus monoceros) from their spawning areas on the Sofala Bank. We found some 5 large events of offshore or southward transport loss (>10% loss) from the Sofala Bank caused by eddies, occurring sporadically. The northern and central Sofala Bank areas were the most affected by larvae lost offshore. Simulations revealed that temperature-induced larval mortality, associated with cold-core cyclonic eddies, could also play a role in larval loss of up to 40%, which is greater than the larval transport loss associated with the eddy circulation. However, when they survived, larvae transported offshore could travel long distances (600–1600 km in 15 days), potentially promoting connectivity with other stocks in the region.

Funder

Newton Prize

French Agence Inter-établissements de Recherche pour le Développement

Mozambican Ministry of Science and Technology

International Centre for Education, Marine and Atmospheric Sciences over Africa

Publisher

Public Library of Science (PLoS)

Reference85 articles.

1. Distribution of Early Developmental Stages of Pink Shrimp,Penaeus Duorarum, in Florida Waters;A.C. Jones;Bulletin of Marine Science,1970

2. Modelling the advection of vertically migrating shrimp larvae;P.C. Rothlisberg;Journal of Marine Research,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3