Crowdsourcing air temperature data for the evaluation of the urban microscale model PALM—A case study in central Europe

Author:

van der Linden LaraORCID,Hogan PatrickORCID,Maronga BjörnORCID,Hagemann RowellORCID,Bechtel BenjaminORCID

Abstract

In summertime and during heat events the urban heat island can negatively impact human health in urban areas. In the context of climate change, climate adaptation receives more attention in urban planning. Microscale urban climate modelling can identify risk areas and evaluate adaptation strategies. Concurrently, evaluating the model results with observational data is essential. So far, model evaluation is mostly limited to short-term field campaigns or a small number of stations. This study uses novel crowdsourcing data from Netatmo citizen weather stations (CWS) to evaluate the urban microscale model PALM for a hot day (Tmax ≥ 30°C) in Bochum in western Germany with anticyclonic atmospheric conditions. Urban-rural air temperature differences are represented by the model. A quality control procedure is applied to the crowdsourced data prior to evaluation. The comparison between the model and the crowdsourced air temperature data reveals a good model performance with a high coefficient of determination (R2) of 0.86 to 0.88 and a root mean squared error (RMSE) around 2 K. Model accuracy shows a temporal pattern and night-time air temperatures during the night are underestimated by the model, likely due to unresolved cloud cover. The crowdsourced air temperature data proved valuable for model evaluation due to the high number of stations within urban areas. Nevertheless, weaknesses related to data quality such as radiation errors must be considered during model evaluation and only the information derived from multiple stations is suitable for model evaluation. The procedure presented here can easily be transferred to planning processes as the model and the crowdsourced air temperature data are freely available. This can contribute to making informed decisions for climate adaptation in urban areas.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3