Projected novelty in the climate envelope of the California Current at multiple spatial-temporal scales

Author:

Smith James A.ORCID,Pozo Buil MercedesORCID,Fiechter JeromeORCID,Tommasi DesireeORCID,Jacox Michael G.ORCID

Abstract

A useful measure of general climate stress is where and when novel habitats emerge. Here we evaluate ‘climate envelope novelty’–a spatial indicator of system-level habitat change–in the California Current System (CCS), by quantifying the emergence of novel ocean conditions in multivariate physical-biogeochemical space. We use downscaled climate projections from three earth system models out to 2100 under emission scenario RCP8.5, and detect novelty at multiple spatial-temporal scales using two methods (n-dimensional hypervolumes and extrapolation detection). Under high emissions, persistent novelty doesn’t appear until around 2040 and then only in small patches of Southern California and the Pacific North West. However, novelty increases rapidly after this (especially in warmer seasons), so that by 2060 up to 50% of the CCS in an average year has shifted to a novel local climate, which increases to 100% by 2090. These results are for the average year, and the first years to experience these levels of novelty typically occur 20 years sooner. The ecosystem will increasingly experience novel combinations of warmer temperatures, lower dissolved oxygen (especially inshore), and a shallower mixed layer (especially offshore). The emergence of extensive local novelty year-round has implications for the required ubiquitous redistribution or adaptation of CCS ecology, and the emergence of extensive regional novelty in warmer months has implications for bioregional change and regionally emerging fisheries. One of our climate projections showed considerably less novelty, indicating that realistic uncertainties in climate change (especially the rate of warming) can mean the difference between a mostly novel or mostly analog future.

Funder

NOAA Climate Program Office Coastal and Ocean Climate Applications (COCA) program

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3