Matilda v1.0: An R package for probabilistic climate projections using a reduced complexity climate model

Author:

Brown Joseph K.ORCID,Pressburger Leeya,Snyder AbigailORCID,Dorheim Kalyn,Smith Steven J.,Tebaldi ClaudiaORCID,Bond-Lamberty Ben

Abstract

A primary advantage to using reduced complexity climate models (RCMs) has been their ability to quickly conduct probabilistic climate projections, a key component of uncertainty quantification in many impact studies and multisector systems. Providing frameworks for such analyses has been a target of several RCMs used in studies of the future co-evolution of the human and Earth systems. In this paper, we present Matilda, an open-science R software package that facilitates probabilistic climate projection analysis, implemented here using the Hector simple climate model in a seamless and easily applied framework. The primary goal of Matilda is to provide the user with a turn-key method to build parameter sets from literature-based prior distributions, run Hector iteratively to produce perturbed parameter ensembles (PPEs), weight ensembles for realism against observed historical climate data, and compute probabilistic projections for different climate variables. This workflow gives the user the ability to explore viable parameter space and propagate uncertainty to model ensembles with just a few lines of code. The package provides significant freedom to select different scoring criteria and algorithms to weight ensemble members, as well as the flexibility to implement custom criteria. Additionally, the architecture of the package simplifies the process of building and analyzing PPEs without requiring significant programming expertise, to accommodate diverse use cases. We present a case study that provides illustrative results of a probabilistic analysis of mean global surface temperature as an example of the software application.

Funder

U.S. Department of Energy

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3