Building a mechanistic understanding of climate-driven elevational shifts in birds

Author:

Neate-Clegg Montague H. C.ORCID,Tingley Morgan W.ORCID

Abstract

Mountains hold much of the world’s taxonomic diversity, but global climate change threatens this diversity by altering the distributions of montane species. While numerous studies have documented upslope shifts in elevational ranges, these patterns are highly variable across geographic regions and taxa. This variation in how species’ range shifts are manifesting along elevational gradients likely reflects the diversity of mechanisms that determines elevational ranges and modulates movements, and stands in contrast to latitudinal gradients, where range shifts show less variability and appear more predictable. Here, we review observed elevational range shifts in a single taxonomic group–birds–a group that has received substantial research attention and thus provides a useful context for exploring variability in range shifts while controlling for the mechanisms that drive range shifts across broader taxonomic groups. We then explore the abiotic and biotic factors that are known to define elevational ranges, as well as the constraints that may prevent birds from shifting. Across the literature, temperature is generally invoked as the prime driver of range shifts while the role of precipitation is more neglected. However, temperature is less likely to act directly on elevational ranges, instead mediating biotic factors such as habitat and food availability, predator activity, and parasite prevalence, which could in turn modulate range shifts. Dispersal ability places an intrinsic constraint on elevational range shifts, exacerbated by habitat fragmentation. While current research provides strong evidence for the importance of various drivers of elevational ranges and shifts, testing the relative importance of these factors and achieving a more holistic view of elevational gradients will require integration of expanding datasets, novel technologies, and innovative techniques.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Reference227 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3