Identifying ecological and evolutionary research targets and risks in climate change studies to break barriers to broad inference

Author:

Love Sarah J.ORCID,Edwards Joseph D.ORCID,Barnes Caitlin N.,d’Entremont Tyler W.ORCID,Hord Ashlynn M.ORCID,Nytko Alivia G.ORCID,Sero Nadejda B.ORCID,Bayliss Shannon L. J.,Kivlin Stephanie N.ORCID,Bailey Joseph K.

Abstract

Understanding the responses of plants, microbes, and their interactions to long-term climate change is essential to identifying the traits, genes, and functions of organisms that maintain ecosystem stability and function of the biosphere. However, many studies investigating organismal responses to climate change are limited in their scope along several key ecological, evolutionary, and environmental axes, creating barriers to broader inference. Broad inference, or the ability to apply and validate findings across these axes, is a vital component of achieving climate preparedness in the future. Breaking barriers to broad inference requires accurate cross-ecosystem interpretability and the identification of reliable frameworks for how these responses will manifest. Current approaches have generated a valuable, yet sometimes contradictory or context dependent, understanding of responses to climate change factors from the organismal- to ecosystem-level. In this synthesis, we use plants, soil microbial communities, and their interactions as examples to identify five major barriers to broad inference and resultant target research areas. We also explain risks associated with disregarding these barriers to broad inference and potential approaches to overcoming them. Developing and funding experimental frameworks that integrate basic ecological and evolutionary principles and are designed to capture broad inference across levels of organization is necessary to further our understanding of climate change on large scales.

Funder

Oak Ridge National Laboratory

National Science Foundation

Biological and Environmental Research

UTK Tennessee Fellowship for Graduate Excellence

Schlumberger Foundation

UTK College of Arts and Sciences Graduate Fellowship

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3