Downscaled seasonal forecasts for the California Current System: Skill assessment and prospects for living marine resource applications

Author:

Jacox Michael G.ORCID,Buil Mercedes Pozo,Brodie Stephanie,Alexander Michael A.,Amaya Dillon J.,Bograd Steven J.,Edwards Christopher A.,Fiechter Jerome,Hazen Elliott L.,Hervieux Gaelle,Tommasi DesireeORCID

Abstract

Ocean forecasting is now widely recognized as an important approach to improve the resilience of marine ecosystems, coastal communities, and economies to climate variability and change. In particular, regionally tailored forecasts may serve as the foundation for a wide range of applications to facilitate proactive decision making. Here, we describe and assess ~30 years of retrospective seasonal (1–12 month) forecasts for the California Current System, produced by forcing a regional ocean model with output from a global forecast system. Considerable forecast skill is evident for surface and bottom temperatures, sea surface height, and upper ocean stratification. In contrast, mixed layer depth, surface wind stress, and surface currents exhibit little predictability. Ocean conditions tend to be more predictable in the first half of the year, owing to greater persistence for forecasts initialized in winter and dynamical forecast skill consistent with winter/spring influence of the El Niño–Southern Oscillation (ENSO) for forecasts initialized in summer. Forecast skill above persistence appears to come through the ocean more than through the atmosphere. We also test the sensitivity of forecast performance to downscaling method; bias correcting global model output before running the regional model greatly reduces bias in the downscaled forecasts, but only marginally improves prediction of interannual variability. We then tailor the physical forecast evaluation to a suite of potential ecological applications, including species distribution and recruitment, bycatch and ship-strike risk, and indicators of ecosystem change. This evaluation serves as a template for identifying promising ecological forecasts based on the physical parameters that underlie them. Finally, we discuss suggestions for developing operational forecast products, including methodological considerations for downscaling as well as the respective roles of regional and global forecasts.

Funder

Climate Program Office

Publisher

Public Library of Science (PLoS)

Reference74 articles.

1. National Marine Sanctuaries Climate Change Science Priorities: Workshop Report.;ZJ Cannizzo;National Oceanographic and Atmospheric Administration, Climate Program Office.,2021

2. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture;AJ Hobday;Front Mar Sci,2018

3. Managing living marine resources in a dynamic environment: the role of seasonal to decadal climate forecasts.;D Tommasi;Prog. Oceanogr,2017

4. Lessons from the first generation of marine ecological forecast products.;MR Payne;Front Mar Sci.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3