Bayesian approach to assessing population differences in genetic risk of disease with application to prostate cancer

Author:

Timmins Iain R.ORCID, ,Dudbridge Frank

Abstract

Population differences in risk of disease are common, but the potential genetic basis for these differences is not well understood. A standard approach is to compare genetic risk across populations by testing for mean differences in polygenic scores, but existing studies that use this approach do not account for statistical noise in effect estimates (i.e., the GWAS betas) that arise due to the finite sample size of GWAS training data. Here, we show using Bayesian polygenic score methods that the level of uncertainty in estimates of genetic risk differences across populations is highly dependent on the GWAS training sample size, the polygenicity (number of causal variants), and genetic distance (FST) between the populations considered. We derive a Wald test for formally assessing the difference in genetic risk across populations, which we show to have calibrated type 1 error rates under a simplified assumption that all SNPs are independent, which we achieve in practise using linkage disequilibrium (LD) pruning. We further provide closed-form expressions for assessing the uncertainty in estimates of relative genetic risk across populations under the special case of an infinitesimal genetic architecture. We suggest that for many complex traits and diseases, particularly those with more polygenic architectures, current GWAS sample sizes are insufficient to detect moderate differences in genetic risk across populations, though more substantial differences in relative genetic risk (relative risk > 1.5) can be detected. We show that conventional approaches that do not account for sampling error from the training sample, such as using a simple t-test, have very high type 1 error rates. When applying our approach to prostate cancer, we demonstrate a higher genetic risk in African Ancestry men, with lower risk in men of European followed by East Asian ancestry.

Funder

Medical Research Council

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3