FgSnt1 of the Set3 HDAC complex plays a key role in mediating the regulation of histone acetylation by the cAMP-PKA pathway in Fusarium graminearum

Author:

Gong Chen,Xu Daiying,Sun Daiyuan,Kang Jiangang,Wang Wei,Xu Jin-RongORCID,Zhang XueORCID

Abstract

The cAMP-PKA pathway is critical for regulating growth, differentiation, and pathogenesis in fungal pathogens. In Fusarium graminearum, mutants deleted of PKR regulatory-subunit of PKA had severe defects but often produced spontaneous suppressors. In this study eleven pkr suppressors were found to have mutations in FgSNT1, a component of the Set3C histone deacetylase (HDAC) complex, that result in the truncation of its C-terminal region. Targeted deletion of the C-terminal 98 aa (CT98) in FgSNT1 suppressed the defects of pkr in growth and H4 acetylation. CT98 truncation also increased the interaction of FgSnt1 with Hdf1, a major HDAC in the Set3 complex. The pkr mutant had no detectable expression of the Cpk1 catalytic subunit and PKA activities, which was not suppressed by mutations in FgSNT1. Cpk1 directly interacted with the N-terminal region of FgSnt1 and phosphorylated it at S443, a conserved PKA-phosphorylation site. CT98 of FgSnt1 carrying the S443D mutation interacted with its own N-terminal region. Expression of FgSNT1S443D rescued the defects of pkr in growth and H4 acetylation. Therefore, phosphorylation at S443 and suppressor mutations may relieve self-inhibitory binding of FgSnt1 and increase its interaction with Hdf1 and H4 acetylation, indicating a key role of FgSnt1 in crosstalk between cAMP signaling and Set3 complex.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

USWBSI

NSF

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3