Abstract
Specific interactions of host and parasite genotypes can lead to balancing selection, maintaining genetic diversity within populations. In order to understand the drivers of such specific coevolution, it is necessary to identify the molecular underpinnings of these genotypic interactions. Here, we investigate the genetic basis of resistance in the crustacean host, Daphnia magna, to attachment and subsequent infection by the bacterial parasite, Pasteuria ramosa. We discover a single locus with Mendelian segregation (3:1 ratio) with resistance being dominant, which we call the F locus. We use QTL analysis and fine mapping to localize the F locus to a 28.8-kb region in the host genome, adjacent to a known resistance supergene. We compare the 28.8-kb region in the two QTL parents to identify differences between host genotypes that are resistant versus susceptible to attachment and infection by the parasite. We identify 13 genes in the region, from which we highlight eight biological candidates for the F locus, based on presence/absence polymorphisms and differential gene expression. The top candidates include a fucosyltransferase gene that is only present in one of the two QTL parents, as well as several Cladoceran-specific genes belonging to a large family that is represented in multiple locations of the host genome. Fucosyltransferases have been linked to resistance in previous studies of Daphnia–Pasteuria and other host–parasite systems, suggesting that P. ramosa spore attachment could be mediated by changes in glycan structures on D. magna cuticle proteins. The Cladoceran-specific candidate genes suggest a resistance strategy that relies on gene duplication. Our results add a new locus to a growing genetic model of resistance in the D. magna–P. ramosa system. The identified candidate genes will be used in future functional genetic studies, with the ultimate aim to test for cycles of allele frequencies in natural populations.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Public Library of Science (PLoS)
Subject
Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Reference82 articles.
1. Catching the Red Queen? The advice of the Rose;KA Lythgoe;Trends in Ecology & Evolution,1998
2. The plant immune system;JDG Jones;Nature,2006
3. Resistance gene-dependent plant defense responses;KE Hammond-Kosack;The Plant Cell,1996
4. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes;PN Dodds;Proceedings of the National Academy of Sciences,2006
5. HIV-1 and human genetic variation;PJ McLaren;Nature Reviews Genetics,2021
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献