Regularized sequence-context mutational trees capture variation in mutation rates across the human genome

Author:

Adams Christopher J.ORCID,Conery MitchellORCID,Auerbach Benjamin J.ORCID,Jensen Shane T.,Mathieson Iain,Voight Benjamin F.ORCID

Abstract

Germline mutation is the mechanism by which genetic variation in a population is created. Inferences derived from mutation rate models are fundamental to many population genetics methods. Previous models have demonstrated that nucleotides flanking polymorphic sites–the local sequence context–explain variation in the probability that a site is polymorphic. However, limitations to these models exist as the size of the local sequence context window expands. These include a lack of robustness to data sparsity at typical sample sizes, lack of regularization to generate parsimonious models and lack of quantified uncertainty in estimated rates to facilitate comparison between models. To address these limitations, we developed Baymer, a regularized Bayesian hierarchical tree model that captures the heterogeneous effect of sequence contexts on polymorphism probabilities. Baymer implements an adaptive Metropolis-within-Gibbs Markov Chain Monte Carlo sampling scheme to estimate the posterior distributions of sequence-context based probabilities that a site is polymorphic. We show that Baymer accurately infers polymorphism probabilities and well-calibrated posterior distributions, robustly handles data sparsity, appropriately regularizes to return parsimonious models, and scales computationally at least up to 9-mer context windows. We demonstrate application of Baymer in three ways–first, identifying differences in polymorphism probabilities between continental populations in the 1000 Genomes Phase 3 dataset, second, in a sparse data setting to examine the use of polymorphism models as a proxy for de novo mutation probabilities as a function of variant age, sequence context window size, and demographic history, and third, comparing model concordance between different great ape species. We find a shared context-dependent mutation rate architecture underlying our models, enabling a transfer-learning inspired strategy for modeling germline mutations. In summary, Baymer is an accurate polymorphism probability estimation algorithm that automatically adapts to data sparsity at different sequence context levels, thereby making efficient use of the available data.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference46 articles.

1. Estimating population divergence time and phylogeny from single-nucleotide polymorphisms data with outgroup ascertainment bias;Y Wang;Mol Ecol,2012

2. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data.;RN Gutenkunst;PLoS Genet.,2009

3. Widespread genomic signatures of natural selection in hominid evolution;G McVicker;PLoS Genet,2009

4. Analysis of protein-coding genetic variation in 60,706 humans;M Lek;Nature,2016

5. A map of constrained coding regions in the human genome;JM Havrilla;Nat Genet,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3