TTLL1 and TTLL4 polyglutamylases are required for the neurodegenerative phenotypes in pcd mice

Author:

Wu Hui-YuanORCID,Rong YongqiORCID,Bansal Parmil K.,Wei Peng,Guo Hong,Morgan James I.ORCID

Abstract

Polyglutamylation is a dynamic posttranslational modification where glutamate residues are added to substrate proteins by 8 tubulin tyrosine ligase-like (TTLL) family members (writers) and removed by the 6 member Nna1/CCP family of carboxypeptidases (erasers). Genetic disruption of polyglutamylation leading to hyperglutamylation causes neurodegenerative phenotypes in humans and animal models; the best characterized being thePurkinje cell degeneration(pcd) mouse, a mutant of the gene encoding Nna1/CCP1, the prototypic eraser. Emphasizing the functional importance of the balance between glutamate addition and elimination, loss of TTLL1 prevents Purkinje cell degeneration inpcd. However, whetherTtll1loss protects other vulnerable neurons inpcd, or if elimination of other TTLLs provides protection is largely unknown. Here using a mouse genetic rescue strategy, we characterized the contribution ofTtll1,4,5,7, or11to the degenerative phenotypes in cerebellum, olfactory bulb and retinae ofpcdmutants.Ttll1deficiency attenuates Purkinje cell loss and function and reduces olfactory bulb mitral cell death and retinal photoreceptor degeneration. Moreover, degeneration of photoreceptors inpcdis preceded by impaired rhodopsin trafficking to the rod outer segment and likely represents the causal defect leading to degeneration as this too is rescued by elimination of TTLL1. Although TTLLs have similar catalytic properties on model substrates and several are highly expressed in Purkinje cells (e.g. TTLL5 and 7), besides TTLL1 only TTLL4 deficiency attenuated degeneration of Purkinje and mitral cells inpcd. Additionally, TTLL4 loss partially rescued photoreceptor degeneration and impaired rhodopsin trafficking. Despite their common properties, the polyglutamylation profile changes promoted by TTLL1 and TTLL4 deficiencies inpcdmice are very different. We also report that loss of anabolic TTLL5 synergizes with loss of catabolic Nna1/CCP1 to promote photoreceptor degeneration. Finally, male infertility inpcdis not rescued by loss of anyTtll. These data provide insight into the complexity of polyglutamate homeostasis and functionin vivoand potential routes to ameliorate disorders caused by disrupted polyglutamylation.

Funder

National Cancer Institute

National Institutes of Health

American Lebanese Syrian Associated Charities

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3