NeuroD1-GPX4 signaling leads to ferroptosis resistance in hepatocellular carcinoma

Author:

Huang PingORCID,Duan WeiORCID,Ruan CaoORCID,Wang Lingxian,Hosea RendyORCID,Wu Zheng,Zeng Jianting,Wu Shourong,Kasim ViviORCID

Abstract

Cell death resistance is a hallmark of tumor cells that drives tumorigenesis and drug resistance. Targeting cell death resistance-related genes to sensitize tumor cells and decrease their cell death threshold has attracted attention as a potential antitumor therapeutic strategy. However, the underlying mechanism is not fully understood. Recent studies have reported that NeuroD1, first discovered as a neurodifferentiation factor, is upregulated in various tumor cells and plays a crucial role in tumorigenesis. However, its involvement in tumor cell death resistance remains unknown. Here, we found that NeuroD1 was highly expressed in hepatocellular carcinoma (HCC) cells and was associated with tumor cell death resistance. We revealed that NeuroD1 enhanced HCC cell resistance to ferroptosis, a type of cell death caused by aberrant redox homeostasis that induces lipid peroxide accumulation, leading to increased HCC cell viability. NeuroD1 binds to the promoter of glutathione peroxidase 4 (GPX4), a key reductant that suppresses ferroptosis by reducing lipid peroxide, and activates its transcriptional activity, resulting in decreased lipid peroxide and ferroptosis. Subsequently, we showed that NeuroD1/GPX4-mediated ferroptosis resistance was crucial for HCC cell tumorigenic potential. These findings not only identify NeuroD1 as a regulator of tumor cell ferroptosis resistance but also reveal a novel molecular mechanism underlying the oncogenic function of NeuroD1. Furthermore, our findings suggest the potential of targeting NeuroD1 in antitumor therapy.

Funder

National Natural Science Foundation of China

Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3