Significant sparse polygenic risk scores across 813 traits in UK Biobank

Author:

Tanigawa YosukeORCID,Qian Junyang,Venkataraman GuhanORCID,Justesen Johanne MarieORCID,Li RuilinORCID,Tibshirani Robert,Hastie TrevorORCID,Rivas Manuel A.ORCID

Abstract

We present a systematic assessment of polygenic risk score (PRS) prediction across more than 1,500 traits using genetic and phenotype data in the UK Biobank. We report 813 sparse PRS models with significant (p < 2.5 x 10−5) incremental predictive performance when compared against the covariate-only model that considers age, sex, types of genotyping arrays, and the principal component loadings of genotypes. We report a significant correlation between the number of genetic variants selected in the sparse PRS model and the incremental predictive performance (Spearman’s ⍴ = 0.61, p = 2.2 x 10−59 for quantitative traits, ⍴ = 0.21, p = 9.6 x 10−4 for binary traits). The sparse PRS model trained on European individuals showed limited transferability when evaluated on non-European individuals in the UK Biobank. We provide the PRS model weights on the Global Biobank Engine (https://biobankengine.stanford.edu/prs).

Funder

National Human Genome Research Institute

National Institutes of Health

National Science Foundation

School of Medicine, Stanford University

Funai Foundation for Information Technology

National Institute on Aging

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference70 articles.

1. Polygenic risk scores: from research tools to clinical instruments;CM Lewis;Genome Med,2020

2. From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer;NR Wray;JAMA Psychiatry,2021

3. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores;BJ Vilhjálmsson;Am J Hum Genet,2015

4. Polygenic scores via penalized regression on summary statistics;TSH Mak;Genet Epidemiol,2017

5. Bayesian large-scale multiple regression with summary statistics from genome-wide association studies;X Zhu;Ann Appl Stat,2017

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3