Abstract
Women’s reproductive cessation is the earliest sign of human aging and is caused by decreasing oocyte quality. Similarly, C. elegans’ reproduction declines in mid-adulthood and is caused by oocyte quality decline. Aberrant mitochondrial morphology is a hallmark of age-related dysfunction, but the role of mitochondrial morphology and dynamics in reproductive aging is unclear. We examined the requirements for mitochondrial fusion and fission in oocytes of both wild-type worms and the long-lived, long-reproducing insulin-like receptor mutant daf-2. We find that normal reproduction requires both fusion and fission, but that daf-2 mutants utilize a shift towards fission, but not fusion, to extend their reproductive span and oocyte health. daf-2 mutant oocytes’ mitochondria are punctate (fissioned) and this morphology is primed for mitophagy, as loss of the mitophagy regulator PINK-1 shortens daf-2’s reproductive span. daf-2 mutants maintain oocyte mitochondria quality with age at least in part through a shift toward punctate mitochondrial morphology and subsequent mitophagy. Supporting this model, Urolithin A, a metabolite that promotes mitophagy, extends reproductive span in wild-type mothers–even in mid-reproduction—by maintaining youthful oocytes with age. Our data suggest that promotion of mitophagy may be an effective strategy to maintain oocyte health with age.
Publisher
Public Library of Science (PLoS)
Subject
Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献