THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data

Author:

Rowland BryceORCID,Huh RuthORCID,Hou Zoey,Crowley CheynnaORCID,Wen JiaORCID,Shen YinORCID,Hu MingORCID,Giusti-Rodríguez PaolaORCID,Sullivan Patrick F.ORCID,Li YunORCID

Abstract

Hi-C data provide population averaged estimates of three-dimensional chromatin contacts across cell types and states in bulk samples. Effective analysis of Hi-C data entails controlling for the potential confounding factor of differential cell type proportions across heterogeneous bulk samples. We propose a novel unsupervised deconvolution method for inferring cell type composition from bulk Hi-C data, the Two-step Hi-c UNsupervised DEconvolution appRoach (THUNDER). We conducted extensive simulations to test THUNDER based on combining two published single-cell Hi-C (scHi-C) datasets. THUNDER more accurately estimates the underlying cell type proportions compared to reference-free methods (e.g., TOAST, and NMF) and is more robust than reference-dependent methods (e.g. MuSiC). We further demonstrate the practical utility of THUNDER to estimate cell type proportions and identify cell-type-specific interactions in Hi-C data from adult human cortex tissue samples. THUNDER will be a useful tool in adjusting for varying cell type composition in population samples, facilitating valid and more powerful downstream analysis such as differential chromatin organization studies. Additionally, THUNDER estimated contact profiles provide a useful exploratory framework to investigate cell-type-specificity of the chromatin interactome while experimental data is still rare.

Funder

National Science Foundation

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference38 articles.

1. Cell type-specific gene expression differences in complex tissues;SS Shen-Orr;Nat Methods,2010

2. Robust enumeration of cell subsets from tissue expression profiles;AM Newman;Nat Methods,2015

3. TOAST: improving reference-free cell composition estimation by cross-cell type differential analysis;Z Li;Genome Biol,2019

4. Identification of differentially methylated cell types in epigenome-wide association studies;SC Zheng;Nat Methods,2018

5. Reference-free deconvolution of DNA methylation data and mediation by cell composition effects;EA Houseman;BMC Bioinformatics,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3