Knockdown of the salivary protein gene NlG14 caused displacement of the lateral oviduct secreted components and inhibited ovulation in Nilaparvata lugens

Author:

Gao Haoli,Zhang Huihui,Yuan Xiaowei,Lin Xumin,Zou Jianzheng,Yu Na,Liu ZewenORCID

Abstract

Saliva plays important roles in insect feeding, but its roles in insect reproduction were rarely reported. Here we reported that the knockdown of a salivary gland-specific gene NlG14 disrupted the reproduction through inhibiting the ovulation of the brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most devastating rice pests in Asia. NlG14 knockdown caused the displacement of the lateral oviduct secreted components (LOSC), leading to the ovulation disorder and the accumulation of mature eggs in the ovary. The RNAi-treated females laid much less eggs than their control counterparts, though they had the similar oviposition behavior on rice stems as controls. NlG14 protein was not secreted into the hemolymph, indicating an indirect effect of NlG14 knockdown on BPH reproduction. NlG14 knockdown caused the malformation of A-follicle of the principal gland and affected the underlying endocrine mechanism of salivary glands. NlG14 reduction might promote the secretion of insulin-like peptides NlILP1 and NlILP3 from the brain, which up-regulated the expression of Nllaminin gene and then caused the abnormal contraction of lateral oviduct muscle. Another explanation was NlG14 reduction disrupted the ecdysone biosynthesis and action through the insulin-PI3K-Akt signaling in ovary. Altogether, this study indicated that the salivary gland specific protein NlG14 indirectly mediated BPH ovulation process, which established a connexon in function between insect salivary gland and ovary.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3