Reduced sister chromatid cohesion acts as a tumor penetrance modifier

Author:

Wang Jun,Thomas Holly R.ORCID,Chen YuORCID,Percival Stefanie M.,Waldrep Stephanie C.,Ramaker Ryne C.ORCID,Thompson Robert G.ORCID,Cooper Sara J.ORCID,Chong ZechenORCID,Parant John M.ORCID

Abstract

Sister chromatid cohesion (SCC) is an important process in chromosome segregation. ESCO2 is essential for establishment of SCC and is often deleted/altered in human cancers. We demonstrate that esco2 haploinsufficiency results in reduced SCC and accelerates the timing of tumor onset in both zebrafish and mouse p53 heterozygous null models, but not in p53 homozygous mutant or wild-type animals. These data indicate that esco2 haploinsufficiency accelerates tumor onset in a loss of heterozygosity (LOH) sensitive background. Analysis of The Cancer Genome Atlas (TCGA) confirmed ESCO2 deficient tumors have elevated number of LOH events throughout the genome. Further, we demonstrated heterozygous loss of sgo1, important in maintaining SCC, also results in reduced SCC and accelerated tumor formation in a p53 heterozygous background. Surprisingly, while we did observe elevated levels of chromosome missegregation and micronuclei formation in esco2 heterozygous mutant animals, this chromosomal instability did not contribute to the accelerated tumor onset in a p53 heterozygous background. Interestingly, SCC also plays a role in homologous recombination, and we did observe elevated levels of mitotic recombination derived p53 LOH in tumors from esco2 haploinsufficient animals; as well as elevated levels of mitotic recombination throughout the genome of human ESCO2 deficient tumors. Together these data suggest that reduced SCC contributes to accelerated tumor penetrance through elevated mitotic recombination.

Funder

National Institute of Health

National Institutes of Health

National Cancer Institute

American Cancer Society

Comprehensive Cancer Center, University of Alabama at Birmingham

National Institute of General Medical Sciences

University of Alabama at Birmingham

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference76 articles.

1. Chromosome Instability; Implications in Cancer Development, Progression, and Clinical Outcomes.;R Vishwakarma;Cancers (Basel).,2020

2. Mechanisms of chromosomal instability.;SL Thompson;Current biology: CB.,2010

3. The mitotic origin of chromosomal instability.;SF Bakhoum;Current biology: CB.,2014

4. The cancer biology of whole-chromosome instability;PH Duijf;Oncogene,2013

5. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis;AJ Holland;Nat Rev Mol Cell Biol,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3