Predictable and stable epimutations induced during clonal plant propagation with embryonic transcription factor

Author:

Wibowo Anjar TriORCID,Antunez-Sanchez JavierORCID,Dawson Alexander,Price Jonathan,Meehan Cathal,Wrightsman TravisORCID,Collenberg MaximillianORCID,Bezrukov IljaORCID,Becker ClaudeORCID,Benhamed Moussa,Weigel DetlefORCID,Gutierrez-Marcos JoseORCID

Abstract

Clonal propagation is frequently used in commercial plant breeding and biotechnology programs because it minimizes genetic variation, yet it is not uncommon to observe clonal plants with stable phenotypic changes, a phenomenon known as somaclonal variation. Several studies have linked epigenetic modifications induced during regeneration with this newly acquired phenotypic variation. However, the factors that determine the extent of somaclonal variation and the molecular changes underpinning this process remain poorly understood. To address this gap in our knowledge, we compared clonally propagated Arabidopsis thaliana plants derived from somatic embryogenesis using two different embryonic transcription factors- RWP-RK DOMAIN-CONTAINING 4 (RKD4) or LEAFY COTYLEDON2 (LEC2) and from two epigenetically distinct founder tissues. We found that both the epi(genetic) status of the explant and the regeneration protocol employed play critical roles in shaping the molecular and phenotypic landscape of clonal plants. Phenotypic variation in regenerated plants can be largely explained by the inheritance of tissue-specific DNA methylation imprints, which are associated with specific transcriptional and metabolic changes in sexual progeny of clonal plants. For instance, regenerants were particularly affected by the inheritance of root-specific epigenetic imprints, which were associated with an increased accumulation of salicylic acid in leaves and accelerated plant senescence. Collectively, our data reveal specific pathways underpinning the phenotypic and molecular variation that arise and accumulate in clonal plant populations.

Funder

ERA-CAPS

Max Planck Society

H2020 European Research Council

Airlangga University Hibah Riset Mandat

Biotechnology and Biological Sciences Research Council

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3