Dispersive forces and resisting spot welds by alternative homolog conjunction govern chromosome shape in Drosophila spermatocytes during prophase I

Author:

Vernizzi LuisaORCID,Lehner Christian F.ORCID

Abstract

The bivalent chromosomes that are generated during prophase of meiosis I comprise a pair of homologous chromosomes. Homolog pairing during prophase I must include mechanisms that avoid or eliminate entanglements between non-homologous chromosomes. In Drosophila spermatocytes, non-homologous associations are disrupted by chromosome territory formation, while linkages between homologous chromosomes are maintained by special conjunction proteins. These proteins function as alternative for crossovers that link homologs during canonical meiosis but are absent during the achiasmate Drosophila male meiosis. How and where within bivalents the alternative homolog conjunction proteins function is still poorly understood. To clarify the rules that govern territory formation and alternative homolog conjunction, we have analyzed spermatocytes with chromosomal aberrations. We examined territory formation after acute chromosome cleavage by Cas9, targeted to the dodeca satellite adjacent to the centromere of chromosome 3 specifically in spermatocytes. Moreover, we studied territory organization, as well as the eventual orientation of chromosomes during meiosis I, in spermatocytes with stable structural aberrations, including heterozygous reciprocal autosomal translocations. Our observations indicate that alternative homolog conjunction is applied in a spatially confined manner. Comparable to crossovers, only a single conjunction spot per chromosome arm appears to be applied usually. These conjunction spots resist separation by the dispersing forces that drive apart homologous pericentromeric heterochromatin and embedded centromeres within territories, as well as the distinct chromosomal entities into peripheral, maximally separated territories within the spermatocyte nucleus.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3