Abstract
Polyploidization may precipitate dramatic changes to the genome, including chromosome rearrangements, gene loss, and changes in gene expression. In dioecious plants, the sex-determining mechanism may also be disrupted by polyploidization, with the potential evolution of hermaphroditism. However, while dioecy appears to have persisted through a ploidy transition in some species, it is unknown whether the newly formed polyploid maintained its sex-determining system uninterrupted, or whether dioecy re-evolved after a period of hermaphroditism. Here, we develop a bioinformatic pipeline using RNA-sequencing data from natural populations to demonstrate that the allopolyploid plant Mercurialis canariensis directly inherited its sex-determining region from one of its diploid progenitor species, M. annua, and likely remained dioecious through the transition. The sex-determining region of M. canariensis is smaller than that of its diploid progenitor, suggesting that the non-recombining region of M. annua expanded subsequent to the polyploid origin of M. canariensis. Homeologous pairs show partial sexual subfunctionalization. We discuss the possibility that gene duplicates created by polyploidization might contribute to resolving sexual antagonism.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
H2020 European Research Council
Publisher
Public Library of Science (PLoS)
Subject
Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献