The impact of developmental stage, tissue type, and sex on DNA double-strand break repair in Drosophila melanogaster

Author:

Graham Elizabeth L.ORCID,Fernandez Joel,Gandhi ShagunORCID,Choudhry IqraORCID,Kellam NataliaORCID,LaRocque Jeannine R.ORCID

Abstract

Accurate repair of DNA double-strand breaks (DSBs) is essential for the maintenance of genome integrity, as failure to repair DSBs can result in cell death. The cell has evolved two main mechanisms for DSB repair: non-homologous end-joining (NHEJ) and homology-directed repair (HDR), which includes single-strand annealing (SSA) and homologous recombination (HR). While certain factors like age and state of the chromatin are known to influence DSB repair pathway choice, the roles of developmental stage, tissue type, and sex have yet to be elucidated in multicellular organisms. To examine the influence of these factors, DSB repair in various embryonic developmental stages, larva, and adult tissues in Drosophila melanogaster was analyzed through molecular analysis of the DR-white assay using Tracking across Indels by DEcomposition (TIDE). The proportion of HR repair was highest in tissues that maintain the canonical (G1/S/G2/M) cell cycle and suppressed in both terminally differentiated and polyploid tissues. To determine the impact of sex on repair pathway choice, repair in different tissues in both males and females was analyzed. When molecularly examining tissues containing mostly somatic cells, males and females demonstrated similar proportions of HR and NHEJ. However, when DSB repair was analyzed in male and female premeiotic germline cells utilizing phenotypic analysis of the DR-white assay, there was a significant decrease in HR in females compared to males. This study describes the impact of development, tissue-specific cycling profile, and, in some cases, sex on DSB repair outcomes, underscoring the complexity of repair in multicellular organisms.

Funder

National Institute of General Medical Sciences

Georgetown University

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3