Segregational drift hinders the evolution of antibiotic resistance on polyploid replicons
-
Published:2023-08-03
Issue:8
Volume:19
Page:e1010829
-
ISSN:1553-7404
-
Container-title:PLOS Genetics
-
language:en
-
Short-container-title:PLoS Genet
Author:
Garoña AnaORCID,
Santer Mario,
Hülter Nils F.,
Uecker Hildegard,
Dagan TalORCID
Abstract
The emergence of antibiotic resistance under treatment depends on the availability of resistance alleles and their establishment in the population. Novel resistance alleles are encoded either in chromosomal or extrachromosomal genetic elements; both types may be present in multiple copies within the cell. However, the effect of polyploidy on the emergence of antibiotic resistance remains understudied. Here we show that the establishment of resistance alleles in microbial populations depends on the ploidy level. Evolving bacterial populations under selection for antibiotic resistance, we demonstrate that resistance alleles in polyploid elements are lost frequently in comparison to alleles in monoploid elements due to segregational drift. Integrating the experiments with a mathematical model, we find a remarkable agreement between the theoretical and empirical results, confirming our understanding of the allele segregation process. Using the mathematical model, we further show that the effect of polyploidy on the establishment probability of beneficial alleles is strongest for low replicon copy numbers and plateaus for high replicon copy numbers. Our results suggest that the distribution of fitness effects for mutations that are eventually fixed in a population depends on the replicon ploidy level. Our study indicates that the emergence of antibiotic resistance in bacterial pathogens depends on the pathogen ploidy level.
Funder
Deutsche Forschungsgemeinschaft
HORIZON EUROPE European Research Council
International Max Planck Research School for Evolutionary Biology
Leibniz campus EvoLung
Publisher
Public Library of Science (PLoS)
Subject
Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献