In rice splice variants that restore the reading frame after frameshifting indel introduction are common, often induced by the indels and sometimes lead to organism-level rescue

Author:

Jia Yanxiao,Qin ChaoORCID,Traw Milton BrianORCID,Chen Xiaonan,He Ying,Kai Jing,Yang SihaiORCID,Wang LongORCID,Hurst Laurence D.ORCID

Abstract

The introduction of frameshifting non-3n indels enables the identification of gene-trait associations. However, it has been hypothesised that recovery of the original reading frame owing to usage of non-canonical splice forms could cause rescue. To date there is very little evidence for organism-level rescue by such a mechanism and it is unknown how commonly indels induce, or are otherwise associated with, frame-restoring splice forms. We perform CRISPR/Cas9 editing of randomly selected loci in rice to investigate these issues. We find that the majority of loci have a frame-restoring isoform. Importantly, three quarters of these isoforms are not seen in the absence of the indels, consistent with indels commonly inducing novel isoforms. This is supported by analysis in the context of NMD knockdowns. We consider in detail the two top rescue candidates, in wax deficient anther 1 (wda1) and brittle culm (bc10), finding that organismal-level rescue in both cases is strong but owing to different splice modification routes. More generally, however, as frame-restoring isoforms are low abundance and possibly too disruptive, such rescue we suggest to be the rare exception, not the rule. Nonetheless, assuming that indels commonly induce frame-restoring isoforms, these results emphasize the need to examine RNA level effects of non-3n indels and suggest that multiple non-3n indels in any given gene are advisable to probe a gene’s trait associations.

Funder

National Natural Science Foundation of China

H2020 European Research Council

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference86 articles.

1. Next generation breeding;D Barabaschi;Plant Sci,2016

2. Why Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential: Reexamining the Connection between the Network Topology and Essentiality.;E Zotenko;PLoS Comput Biol,2008

3. Evolutionary and Physiological Importance of Hub Proteins.;NN Batada;PLoS Comput Biol,2006

4. Gene essentiality and the topology of protein interaction networks;S Coulomb;Proc R Soc B Biol Sci,2005

5. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast;B Papp;Nature,2004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3