Abstract
Impaired formation of the intrahepatic biliary network leads to cholestatic liver diseases, which are frequently associated with autoimmune disorders. Using a chemical mutagenesis strategy in zebrafish combined with computational network analysis, we screened for novel genes involved in intrahepatic biliary network formation. We positionally cloned a mutation in thenckap1lgene, which encodes a cytoplasmic adaptor protein for the WAVE regulatory complex. The mutation is located in the last exon after the stop codon of the primary splice isoform, only disrupting a previously unannotated minor splice isoform, which indicates that the minor splice isoform is responsible for the intrahepatic biliary network phenotype. CRISPR/Cas9-mediatednckap1ldeletion, which disrupts both the primary and minor isoforms, showed the same defects. In the liver ofnckap1lmutant larvae, WAVE regulatory complex component proteins are degraded specifically in biliary epithelial cells, which line the intrahepatic biliary network, thus disrupting the actin organization of these cells. We further show thatnckap1lgenetically interacts with the Cdk5 pathway in biliary epithelial cells. These data together indicate that althoughnckap1lwas previously considered to be a hematopoietic cell lineage-specific protein, its minor splice isoform acts in biliary epithelial cells to regulate intrahepatic biliary network formation.
Funder
National Institutes of Health
Cleveland Digestive Diseases Research Core Center
Lerner Research Institute, Cleveland Clinic
Cleveland Clinic Liver Tumor Research Center of Excellence Fund
Publisher
Public Library of Science (PLoS)
Subject
Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献