SNX-3 mediates retromer-independent tubular endosomal recycling by opposing EEA-1-facilitated trafficking

Author:

Tian Yangli,Kang Qiaoju,Shi XuemengORCID,Wang Yuan,Zhang Nali,Ye Huan,Xu Qifeng,Xu Tao,Zhang RongyingORCID

Abstract

Early endosomes are the sorting hub on the endocytic pathway, wherein sorting nexins (SNXs) play important roles for formation of the distinct membranous microdomains with different sorting functions. Tubular endosomes mediate the recycling of clathrin-independent endocytic (CIE) cargoes back toward the plasma membrane. However, the molecular mechanism underlying the tubule formation is still poorly understood. Here we screened the effect on the ARF-6-associated CIE recycling endosomal tubules for all the SNX members in Caenorhabditis elegans (C. elegans). We identified SNX-3 as an essential factor for generation of the recycling tubules. The loss of SNX-3 abolishes the interconnected tubules in the intestine of C. elegans. Consequently, the surface and total protein levels of the recycling CIE protein hTAC are strongly decreased. Unexpectedly, depletion of the retromer components VPS-26/-29/-35 has no similar effect, implying that the retromer trimer is dispensable in this process. We determined that hTAC is captured by the ESCRT complex and transported into the lysosome for rapid degradation in snx-3 mutants. Interestingly, EEA-1 is increasingly recruited on early endosomes and localized to the hTAC-containing structures in snx-3 mutant intestines. We also showed that SNX3 and EEA1 compete with each other for binding to phosphatidylinositol-3-phosphate enriching early endosomes in Hela cells. Our data demonstrate for the first time that PX domain-only C. elegans SNX-3 organizes the tubular endosomes for efficient recycling and retrieves the CIE cargo away from the maturing sorting endosomes by competing with EEA-1 for binding to the early endosomes. However, our results call into question how SNX-3 couples the cargo capture and membrane remodeling in the absence of the retromer trimer complex.

Funder

Major Research Plan

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference58 articles.

1. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport;F Steinberg;Nat Cell Biol,2013

2. The early endosome: a busy sorting station for proteins at the crossroads;M Jovic;Histol Histopathol,2010

3. Clathrin-independent pathways of endocytosis;S Mayor;Cold Spring Harb Perspect Biol,2014

4. Discovery of new cargo proteins that enter cells through clathrin-independent endocytosis;CA Eyster;Traffic,2009

5. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan;S Sigismund;Physiol Rev,2012

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3