Aberrant binding of mutant HSP47 affects posttranslational modification of type I collagen and leads to osteogenesis imperfecta

Author:

Syx DelfienORCID,Ishikawa YoshihiroORCID,Gebauer JanORCID,Boudko Sergei P.ORCID,Guillemyn BrechtORCID,Van Damme TimORCID,D’hondt Sanne,Symoens SofieORCID,Nampoothiri SheelaORCID,Gould Douglas B.,Baumann Ulrich,Bächinger Hans Peter,Malfait Fransiska

Abstract

Heat shock protein 47 (HSP47), encoded by the SERPINH1 gene, is a molecular chaperone essential for correct folding of collagens. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta leading to early demise. p.R222 is a highly conserved residue located within the collagen interacting surface of HSP47. Binding assays show a significantly reduced affinity of HSP47-R222S for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen produced by dermal fibroblasts, with increased glycosylation and/or hydroxylation of lysine and proline residues as shown by mass spectrometry. Since we also observed a normal intracellular folding and secretion rate of type I procollagen, this overmodification cannot be explained by prolonged exposure of the procollagen molecules to the modifying hydroxyl- and glycosyltransferases, as is commonly observed in other types of OI. We found significant upregulation of several molecular chaperones and enzymes involved in procollagen modification and folding on Western blot and RT-qPCR. In addition, we showed that an imbalance in binding of HSP47-R222S to unfolded type I collagen chains in a gelatin sepharose pulldown assay results in increased binding of other chaperones and modifying enzymes. The elevated expression and binding of this molecular ensemble to type I procollagen suggests a compensatory mechanism for the aberrant binding of HSP47-R222S, eventually leading to overmodification of type I procollagen chains. Together, these results illustrate the importance of HSP47 for proper posttranslational modification and provide insights into the molecular pathomechanisms of the p.(R222S) alteration in HSP47, which leads to a severe OI phenotype.

Funder

Research Foundation, Flanders, Belgium

Ghent University to Anne De Paepe

National Institutes of Health

German research Council

Shriners Hospitals for Children

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics(clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Update on the Genetics of Osteogenesis Imperfecta;Calcified Tissue International;2024-08-11

2. HSP47 in human diseases: Navigating pathophysiology, diagnosis and therapy;Clinical and Translational Medicine;2024-08

3. Introduction;Biochemistry of Collagens, Laminins and Elastin;2024

4. Collagen chaperones;Biochemistry of Collagens, Laminins and Elastin;2024

5. Heat shock protein 47 and venous thrombosis: letting sleeping bears lie;Journal of Thrombosis and Haemostasis;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3