The clarifying role of time series data in the population genetics of HIV

Author:

Feder Alison F.ORCID,Pennings Pleuni S.,Petrov Dmitri A.

Abstract

HIV can evolve remarkably quickly in response to antiretroviral therapies and the immune system. This evolution stymies treatment effectiveness and prevents the development of an HIV vaccine. Consequently, there has been a great interest in using population genetics to disentangle the forces that govern the HIV adaptive landscape (selection, drift, mutation, and recombination). Traditional population genetics approaches look at the current state of genetic variation and infer the processes that can generate it. However, because HIV evolves rapidly, we can also sample populations repeatedly over time and watch evolution in action. In this paper, we demonstrate how time series data can bound evolutionary parameters in a way that complements and informs traditional population genetic approaches. Specifically, we focus on our recent paper (Feder et al., 2016, eLife), in which we show that, as improved HIV drugs have led to fewer patients failing therapy due to resistance evolution, less genetic diversity has been maintained following the fixation of drug resistance mutations. Because soft sweeps of multiple drug resistance mutations spreading simultaneously have been previously documented in response to the less effective HIV therapies used early in the epidemic, we interpret the maintenance of post-sweep diversity in response to poor therapies as further evidence of soft sweeps and therefore a high population mutation rate (θ) in these intra-patient HIV populations. Because improved drugs resulted in rarer resistance evolution accompanied by lower post-sweep diversity, we suggest that both observations can be explained by decreased population mutation rates and a resultant transition to hard selective sweeps. A recent paper (Harris et al., 2018, PLOS Genetics) proposed an alternative interpretation: Diversity maintenance following drug resistance evolution in response to poor therapies may have been driven by recombination during slow, hard selective sweeps of single mutations. Then, if better drugs have led to faster hard selective sweeps of resistance, recombination will have less time to rescue diversity during the sweep, recapitulating the decrease in post-sweep diversity as drugs have improved. In this paper, we use time series data to show that drug resistance evolution during ineffective treatment is very fast, providing new evidence that soft sweeps drove early HIV treatment failure.

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics(clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3